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of the GEBVs of training set individuals, especially for 
a low number of markers. We demonstrate that the num-
ber of markers is the primary determinant of the optimum 
shrinkage coefficient maximizing the reliability and we 
recommend methods eligible for routine usage in practical 
applications.

Introduction

Since genomic prediction was first proposed by Meuwis-
sen et al. (2001), it has proven to be a promising approach 
for numerous applications in both animal (e.g., Hayes et al. 
2009; Hayes and Goddard 2010) and plant breeding (e.g., 
Bernardo and Yu 2007; Riedelsheimer et al. 2012). In the 
literature, the focus has so far been on the reliability of 
GEBVs for unobserved genotypes, whereas the training 
set (TS) of individuals used for calibrating the predic-
tion model has received only little attention. However, in 
applied plant breeding programs, the TS individuals consti-
tute a considerable fraction of the total breeding population 
and are usually themselves selection candidates. For TS 
individuals, both their phenotypic values and their GEBVs 
are available.

One of the most popular methods for genomic predic-
tion is genomic best linear unbiased prediction (GBLUP), 
which has proven to be simple and efficient with perfor-
mance that compares well with more sophisticated predic-
tion methods (de Los Campos et al. 2013). It is based on 
the animal model (Lynch and Walsh 1998) that has been 
widely used by animal breeders for decades. The differ-
ence lies in the definition of the relationship matrix A. 
While in the classical animal breeding literature, A is cal-
culated from pedigree data (e.g., Lynch and Walsh 1998), 
the principal innovation of GBLUP was to calculate A 
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from genome-wide marker data (Habier et al. 2007; Van-
Raden 2008; Goddard et al. 2009), often referred to as the 
genomic relationship matrix (GRM).

The elements of the GRM are estimates of the genetic 
correlation between alleles taken from pairs of individuals 
and can be conveniently computed with reference to the 
current population (Powell et al. 2010). As such, they can 
be interpreted as deviations from expected allele sharing 
between individuals, given the allele frequencies of the cur-
rent population (Astle and Balding 2009). These deviations 
are a result of Mendelian sampling and linkage during the 
segregation of loci (Hill and Weir 2011).

Estimating genetic covariances from marker data allows 
for defining relationships among individuals of unknown 
ancestry, which would classically be treated as unrelated. 
An example in plant breeding would be a diversity panel 
of lines. Furthermore, it enables to identify additive-genetic 
variation within groups of individuals having identical ped-
igree relationships, for instance full-sib families.

Endelman and Jannink (2012) examined genomic pre-
diction using GBLUP in the TS and demonstrated that 
the reliability of GEBVs of TS individuals can be sub-
stantially increased by shrinking the GRM towards a less 
complex target matrix that can be estimated from the data 
with higher precision. The problem was also addressed 
by Riedelsheimer and Melchinger (2013), who applied 
selection index theory to construct a selection index that 
aims to optimally combine GEBVs and phenotypic val-
ues of TS individuals. Apart from those previous studies, 
the importance of genomic prediction in the TS has not 
been appropriately recognized in the literature so far. Our 
study aims to alleviate this neglect by comparing the per-
formance of several alternative shrinkage methods as well 
as the method of Riedelsheimer and Melchinger (2013). 
Besides two novel shrinkage methods that are based on 
measures of linkage disequilibrium between marker loci, 
we applied a regression approach similar to the pro-
posal of Yang et al. (2010) and Goddard et al. (2011) and 
also used the method presented by Endelman and Jan-
nink (2012). The objective of our study was to compare 
the alternative shrinkage methods in terms of reliabili-
ties of GEBVs for different population types and marker 
densities.

Material and methods

Statistical model

The GEBVs were computed by GBLUP with the basic lin-
ear mixed model

(1)yi = µ + ai + ei,

where the phenotypic value yi of the ith individual is 
decomposed into a common intercept µ (fixed), a true 
genetic value ai (random), and a residual term ei. Using 
vector notation, the model assumes that a ∼ N

(
0, Aσ 2

a

)
 

and e ∼ N
(
0, Iσ 2

e

)
, where σ 2

a  and σ 2
e  are the genetic and 

residual variance components, respectively. The matrix A 
is the GRM and its computation will be detailed later. The 
genetic values were predicted using the standard BLUP 
formulas (Lynch and Walsh 1998)

where V = Aσ 2
a + Iσ 2

e . Variance components and herit-
abilities were estimated using the spectral decomposition 
algorithm of Kang et al. (2008) as implemented in the R 
package rrBLUP (Endelman 2011).

Simulation

We simulated two different population types, a popula-
tion of unrelated lines (UR) and a biparental family of 
lines (BP). The UR population was simulated by sampling 
genotypes from a joint distribution as described in Mon-
tana (2005) using allele frequencies sampled from the 
interval [0.35, 0.65] and LD modelled following the expo-
nential decay function LD(d) = 0.8 × e−20d, where d is 
the genetic distance in Morgan. The BP population was 
generated by recombining the genomes of two divergent 
parental lines (i.e., lines that were generated by randomly 
assigning SNP alleles to one or the other parent with equal 
probability) using the R package hypred (Technow 2013). 
In both populations, haplotypes were doubled to obtain 
fully homozygous doubled haploid lines. We simulated ten 
chromosomes, the lengths of which were taken from the 
Genetics (2008) Composite Map of Maize (http://www.
maizegdb.org) with a total map length of ∼18 Morgan. We 
used a constant number of 200 QTL, such that the QTL 
density amounted to about 11 QTL per Morgan. In both 
scenarios, we used different TS sizes N ∈ {50, 100, 200} 
and heritabilities h2 ∈ {0.25, 0.5, 0.75}. The size of the pre-
diction set (PS) was held constant at 200 individuals. TS 
sizes were chosen to reflect the numbers used in practical 
plant breeding programs.

In order to vary linkage disequilibrium between mark-
ers and QTL, we used increasing numbers of markers 
M ∈ {50, 100, 500, 1, 000, 2, 500}. To place QTL and mark-
ers on the genome, first their number per chromosome was 
sampled from a multinomial distribution with class prob-
abilities equal to the relative chromosome lengths. Subse-
quently, QTL and markers were uniformly distributed along 

(2)µ̂ =
(

1T V−11
)−1

1T V−1y

(3)â = σ 2
a AV−1

(
y − 1µ̂

)
,
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the respective chromosomes. QTL effects were drawn from 
a gamma distribution (Meuwissen et al. 2001) with shape 
1.0 and rate 2.0. The signs of the effects were sampled from 
a Bernoulli distribution with p = 0.5. The QTL effects 
were then scaled to achieve an overall genetic variance 
equal to 1.0. Phenotypes were simulated by adding an inde-
pendent Gaussian error term with σ 2

e = 1−h2

h2 , depending on 
the heritability h2. The reliability of GEBVs was calculated 
as the squared correlation coefficient between GEBVs and 
the simulated true genetic values and is denoted by ρ2.

All of our results were obtained from 500 independ-
ent simulation runs. In order to determine the maximum 
reliability ρ2

max in the TS and the corresponding optimum 
shrinkage coefficient δopt to be used in Eq. 5 described 
below, we computed the reliability of the resulting GEBVs 
in the TS at a sequence of 100 shrinkage coefficients 
equally spaced between 0 and 0.9 for each simulation run. 
Averages across all runs were calculated for each position 
in the sequence and ρ2

max and δopt were determined numeri-
cally. The reliability of the phenotypic values, i.e., the 
squared correlation coefficient between phenotypic values 
and true genetic values corresponded to the heritability h2.  
All computations were performed within the statistical 
computing environment R (R Core Team 2014).

Shrinkage methods

As a starting point and reference for all methods, the GRM 
was computed according to the first method of VanRaden 
(2008), which we refer to as Method VR1. As shown by 
Endelman and Jannink (2012), this method is also suitable 
for populations of inbred lines and the GRM is computed 
according to the following formula:

(Habier et al. 2007; VanRaden 2008; Endelman and Jan-
nink 2012), where W is the column-centered genotype 
matrix with wik = xik − 2pk; here xik ∈ {0, 1, 2} codes the 
number of major alleles at the kth locus in the ith individ-
ual and pk is the sample allele frequency at the kth locus. 
Under the infinitesimal model, the genetic value is deter-
mined by an infinitely large number of unlinked loci each 
of which contributes a small effect (Hill 2010). Given these 
assumptions, the genomic relationship matrix can be opti-
mally estimated from the observed marker loci by Eq. 4 
(Endelman and Jannink 2012).

In the following, we describe four methods that are 
based on the principle of imposing shrinkage on Â to obtain 
a modified relationship matrix that can be written as

(4)Â = WWT

2
∑

k pk(1 − pk)
,

(5)Â∗ = δT + (1 − δ)Â,

where T is a target matrix toward which Â is shrunken. 
The shrinkage coefficient δ specifies the strength of shrink-
age imposed on Â. Methods 1 and 2 are novel, Method 3 
is based on Yang et al. (2010) and Goddard et al. (2011) 
and further developed by us, and method 4 was presented 
by Endelman and Jannink (2012). In Methods 1–3, the tar-
get matrix toward which Â is shrunken is a diagonal matrix 
with elements equal to the average of the diagonal ele-
ments of Â, which is equal to 1 + f̂ . Here f̂  is the average 
inbreeding coefficient in the population, which equals 2 for 
fully inbred lines as used in the present study.

Method 1: adjLD

In preliminary analyses we observed that the optimum 
shrinkage coefficient is in a strong relationship with LD. 
We, therefore, developed a heuristic method in which the 
LD between adjacent marker loci (LD adj) was used to com-
pute the shrinkage coefficient as δadjLD = 1 − LDadj. The 
LD between adjacent markers was obtained as the average 
of the squared correlation between all pairs of neighboring 
markers across the genome (Hill and Robertson 1968).

 Method 2: effLD

Because LDadj only captures LD between adjacent loci, we 
devised a measure for effective LD (LDeff) between a sin-
gle hypothetical QTL and its surrounding markers. In short, 
LDeff measures the amount of variation in the genotype of 
a single locus that is simultaneously explained by the geno-
types of several surrounding loci. The shrinkage coefficient 
δ is then analogously computed as δeffLD = 1 − LDeff.  
A detailed description of the method is provided in the 
“Appendix”.

Method 3: RG

The third method extends the regression approach described 
by Yang et al. (2010) and Goddard et al. (2011). Here, the 
rationale is to regress relationship coefficients computed 
with QTL on those computed with markers and use the slope 
β for shrinkage to obtain an unbiased estimate of the GRM .  
In practice, β has to be estimated based on marker data 
alone, because the QTL are unkown. In Yang et al. (2010), β 
is estimated by randomly splitting markers into two equally 
sized sets for different numbers of markers and subsequently 
treating one set as proxies for QTL. The regression coeffi-
cient β is obtained by regressing the elements of (A − I) 
on the elements of (Â − I), where A is the GRM computed 
with the (pseudo-) QTL and Â the GRM computed with the 
markers. In our study, we estimated β by randomly splitting 
the total number of markers into two distinct sets. Because 
the number of QTL is relevant for the estimation of β, we 
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varied the set size of the pseudo-QTL starting from 5 up to 
half the number of all markers. Then we performed separate 
regressions for each set size with 25 replications, where we 
regressed the elements of (A − TQTL) on the elements of 
(Â − T), including the diagonal. Here, T and TQTL are the 
diagonal matrices that contain the average of the diagonal 
elements of Â and A, respectively. The mean of all regression 
coefficients was used as an estimate β̂  and the corresponding 
shrinkage coefficient was obtained as δRG = 1 − β̂ . In addi-
tion, we computed the shrinkage coefficient of Method RG 
using the true QTL genotypes to calculate A, denoted δQTL

RG ,  
for comparison.

Method 4: EJ

This method was devised by Endelman and Jannink (2012) 
and differs from the previous ones in that a different target 
for shrinkage is used. In the original presentation of Endel-
man and Jannink (2012), the shrunken GRM is computed as

where 〈Sii〉 is the mean of the diagonal elements of S with 
S = M−1WWT − �W·k��W·k�T being the sample covari-
ance matrix, �W·k� is a column vector containing the row 
means of W, and 〈pkqk〉 is the average of the product 
between allele frequencies across all loci. This can be rear-
ranged to

Hence, Endelman and Jannink (2012) use a similar target 
matrix as we do, which has the same diagonal elements 
as T, but has in addition non-zero off-diagonal elements 
determined by the second term in the first parenthesis in 
Eq. 6. The computation of the shrinkage coefficient δEJ was 
described in Endelman and Jannink (2012).

Method 5: RM

In the context of ressource optimization for a single breed-
ing cycle with genomic selection, Riedelsheimer and 
Melchinger (2013) proposed a selection index that com-
bines GEBVs with phenotypic data for individuals in the 
training set. Their index is based on the theory presented 
in Lande and Thompson (1990) originally developed for 
marker-assisted selection. Although this method is not based 
on shrinkage estimation of the GRM, we included it in our 
analyses because it was originally constructed with the 
objective to improve the reliability of GEBVs of training set 
individuals, which is also the ultimate goal of the shrinkage 
methods presented earlier. Moreover, shrinkage estimation 

Â∗ = δEJ �Sii�I + (1 − δEJ)S + �W·k��W·k�T

2�pkqk�
,

(6)Â∗ = δEJ

(
�Sii�I

2�pkqk�
+ �W·k��W·k�T

2�pkqk�

)
+ (1 − δEJ)Â.

of the GRM effectively leads to an up-weighting of the own 
phenotypic value of an individual, while down-weighting 
the information of related individuals. Thus, the shrinkage 
coefficient can be conceptually regarded as a selection index 
combining a phenotype’s own value with its GEBVs, esti-
mated by using a non-shrunken GRM. In the “Appendix”, 
we provide a detailed derivation of the formulas presented 
in Riedelsheimer and Melchinger (2013) and point out that 
some key assumptions implicitly made are violated.

Results

Reliability of method VR1 in the TS and PS

For the same size of the training set N, heritability h2, and 
number of markers M, reliabilities for both TS and PS 
using Method VR1 were always higher in the BP popula-
tion than in the UR population (Table 1) . In general, reli-
abilities increased with increasing N, h2 and M. In the BP 
population, reliabilities in the PS amounted to 51–61 % of 
those observed in the TS for N = 50 and to 81–88 % for 
N = 200, with increasing percentage value for increasing 
number of markers. On the other hand, in the UR popula-
tion reliabilities in the PS amounted to 11–25 % of those 
in the TS for N = 50 and 37–57 % for N = 200. While the 
reliabilities for N = 50 were above 0.17 and thus reasona-
bly high in the BP population, they were lower than 0.17 in 
the UR population. In the UR population, the reliability in 
the TS decreased for increasing TS size when the number 
of markers was <500, but increased for M ≥ 500 (Online 
Resource 1, Table S2) . Moreover, the reliability in the TS 
of the UR population only surpassed h2 when M > 200, for 
all levels of N and h2.

Reliabilities in the BP and UR population

The relative performance of the methods was similar for 
all levels of N. We, therefore, limit our presentation of 
results to those obtained for N = 200, for the sake of brev-
ity. Results for N = 50 and N = 100 are shown in Online 
Resource 1. The performance of the various methods in the 
UR population for a training set size of 200 showed a strong 
dependency on the heritability h2 and the number of mark-
ers M (Fig. 1). The difference between Method VR1 and the 
maximum reliability ρ2

max was largest for high h2 and low M 
and smallest vice versa. For M = 100, the methods adjLD, 
effLD, and EJ performed equally well, whereas RG showed 
slightly lower performance, especially for high h2. Method 
RM led to the lowest reliability of GEBVs compared to all 
the other methods and was hardly better than Method VR1. 
For M = 500, effLD and RG were superior, followed by EJ 
and RM, which had comparable reliabilities. The reliability 
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of Method adjLD was lowest. For M = 2,500, the reliabil-
ity of VR1 was already almost identical with the optimum 
ρ2

opt. Here, the best methods were RG, EJ, and RM, whereas 
effLD and adjLD showed the lowest reliability.

In the BP population, for M = 100, Method RG and 
effLD had the highest reliability. Method RM showed com-
parable performance to VR1, whereas methods adjLD and 
EJ were only marginally better than VR1 for h2 = 0.75 and 
otherwise worse. For M ≥ 500, however, the differences 
between the methods and VR1 were very small. However, 
for M = 2,500 and h2 = 0.75, Method effLD showed a dis-
tinctly lower performance than the other methods.

Shrinkage coefficients

In our simulations, we numerically determined the opti-
mum shrinkage coefficient δopt that maximized the reliabil-
ity in the TS. To assess the relative importance of the num-
ber of markers M, heritability h2, and training set size N on 
the variation in δopt, we used linear regression with scaled 
predictors (Table 2) .

In the UR and BP populations, the total variation in the 
optimum shrinkage coefficient δopt explained by the lin-
ear regression amounted to R2 = 0.633 and R2 = 0.394, 
respectively. In both population types, the number of mark-
ers M showed the largest regression coefficient, with −2.16 
in UR and −0.095 in BP. Compared to M, heritability h2 
and training set size N had only a small influence on δopt in 
both population types.

Because of this, we computed δopt for different numbers 
of markers, averaging over heritability and training set size 
and compared it to the shrinkage coefficients obtained by 
Methods adjLD, effLD, and RG (Table 3) , which do not 
vary with h2 and N by definition. In addition, we calculated 
the shrinkage coefficient for Method RG using the true 
QTL (δQTL

RG ).
In the UR (BP) population, δopt was 0.81 (0.39) for 

M = 50 and was reduced to 0.05 (0.01) for M = 2, 500. 
Across both population types, δQTL

RG  was remarkably close 
to δopt, with a correlation of 0.98. For Method RG, δRG 
was considerably lower than δopt for M ≤ 100, but in good 
agreement otherwise. The shrinkage coefficient δadjLD was 
generally higher than δopt in both population types for all 
levels of M and decreased only to 0.37 for M = 2, 500 in 
the UR population. For Method effLD, δeffLD was close to 
δopt for M ≤ 200, but its value stayed almost constant for 
M ≥ 500 in the UR population and even increased in the 
BP population. We found that the optimum shrinkage coef-
ficient δopt and δQTL

RG  were almost identical. The estimate 
δRG matched δopt for M = 100 and upward.

Discussion

Shrinkage estimation of the GRM

Best linear unbiased prediction (BLUP) is equivalent to a 
selection index when fixed effects are first estimated using 

Table 1  Reliability in the 
training and prediction set 
using the standard GRM after 
VanRaden (2008) (Method 
VR1) for different training 
set sizes (N = 50, 100, 200

), heritabilities 
(h2 = 0.25, 0.50, 0.75

) and number of markers 
(M = 100, 500, 2, 500) 
uniformly distributed on 10 
chromosomes with a total 
length of about 18 Morgans

N h2 M BP UR

TS PS TS PS

50 0.25 100 0.335 0.177 0.237 0.033

500 0.357 0.201 0.278 0.055

2,500 0.362 0.215 0.295 0.072

0.5 100 0.540 0.281 0.417 0.052

500 0.575 0.332 0.503 0.100

2,500 0.589 0.351 0.523 0.119

0.75 100 0.729 0.372 0.598 0.071

500 0.779 0.459 0.728 0.138

2,500 0.780 0.475 0.736 0.163

200 0.25 100 0.477 0.383 0.219 0.088

500 0.545 0.465 0.328 0.160

2,500 0.559 0.488 0.363 0.200

0.5 100 0.648 0.527 0.366 0.138

500 0.725 0.630 0.551 0.262

2,500 0.733 0.641 0.590 0.323

0.75 100 0.747 0.608 0.476 0.168

500 0.849 0.735 0.731 0.337

2,500 0.861 0.763 0.778 0.413
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generalized least-squares and subsequently used to correct 
phenotypic values (Henderson 1973). This index optimally 
combines the available phenotypic information of related 
individuals and maximizes the correlation between pre-
dicted and true genetic values (Searle et al. 1992). How-
ever, this property depends on the correct specification of 
the covariance structure, i.e., the GRM and the variance 
components. If markers are not in sufficient LD with QTL, 
the relationships derived from marker genotypes deviate 
from the actual relationships at the QTL (Yang et al. 2010), 
resulting in a misrepresentation of the true QTL relation-
ships in the GRM. This leads to spurious signals coming 
from the phenotypic values of other individuals and, as a 
consequence, the reliability of the GEBVs is impaired 
and can even be significantly lower than the heritabil-
ity (Figs. 1,  2). A similar phenomenon was observed by 
Habier et al. (2013), where they showed that increasing the 
TS size can even lead to reduced reliability of individuals 
in the PS because of ‘relationship noise’ due to the misrep-
resentation of the actual pedigree relationships in the GRM. 
Shrinkage estimation of the GRM can then recover some of 

the lost reliability when a proportionally larger amount of 
‘noise’ due to incomplete LD is shrunken to zero compared 
to actual QTL relationships traced by markers. In terms of 
the BLUP selection index, shrinkage leads to an up-weight-
ing of the own phenotypic value of an individual and down-
weighting of phenotypic values of other individuals and by 
this reduces the negative impact of spurious signals from 
misrepresented relationships.

Optimum shrinkage coefficient

By using linear regression , we found that in both popula-
tion types most of the variation in the optimum shrinkage 
coefficient δopt can be explained by the number of mark-
ers (Table 2). The number of markers is strongly related 
to LD, so that in turn, LD is an important influencing fac-
tor of δopt. Consequently, if a sufficient number of mark-
ers is present to ensure a high level of LD, relationships 
in the GRM are specified correctly and shrinkage is not 
required. This corroborates the notion that information 
about actual relationships conveyed by markers is tightly 

Fig. 1  Reliability (ρ2) in the UR population for a training set size 
of N = 200 for different numbers of markers (M = 100, 500, 2, 500

) and heritabilities (h2
= 0.25, 0.50, 0.75). The solid black curve 

shows the reliability when the shrinkage coefficient δ is systemati-
cally varied between 0 and 0.9. The maximum of this curve, ρ2

max, 
is indicated by the dashed horizontal black line, and the value of δ 
for which ρ2

max was achieved, which is δopt, is shown by the vertical 

red line, surrounded by a shaded region where the reliability is not <
99.5 % of the ρ2

max. The boxplots shows the mean and the 0.90, 0.65, 
0.35, and 0.10 quantiles for the different methods, centered at the 
average shrinkage coefficient of the respective method. The boxplots 
for Methods EJ and RM are drawn without a scale on the x-axis in a 
separate section within each panel, because they cannot be compared 
to the other methods based on their shrinkage coefficient
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associated with LD (Yang et al. 2010). LD also strongly 
impacted the reliability of GEBVs. The lower LD in the 
UR compared to BP population can explain the gener-
ally lower reliability in both TS and PS in the former. The 
presence of extended linkage blocks due to cosegregation 
(Frisch and Melchinger 2007; Smith et al. 2008) in bipa-
rental populations of doubled haploid lines can explain the 

higher reliability in the BP compared to the UR population 
(Habier et al. 2013).

The difference between the maximum reliability ρ2
max 

obtained using the optimum shrinkage coefficient δopt and 
the reliability obtained for Method VR1 can be regarded 
as the maximum achievable gain in reliability that can be 
brought about by shrinkage. This gain was generally high-
est for a low number of markers M and high heritability h2,  
and vice versa (Figs. 1, 2). However, because the focus is 
on the reliability in the TS, for which phenotypic values 
are available, any gain in reliability due to shrinkage has 
to be set into relationship to h2, which represents the reli-
ability achieved when selecting on the phenotypic values 
directly. Therefore, although the gain in reliability went up 
with increasing h2, the difference between ρ2

max and h2 went 
down. Hence, there is a range where h2 is high enough to 
allow shrinkage to substantially improve the reliability of 
GEBVs in the TS relative to the one obtained with Methods 
VR1, but yet low enough to allow ρ2

max to be appreciably 
higher than h2. This range is precisely what was termed 
the “sweet spot” by Endelman and Jannink (2012). In their 

Fig. 2  Reliability (ρ2) in the BP population for a training set size of 
N = 200 for different numbers of markers (M = 100, 500, 2,500) and 
heritabilities (h2

= 0.25, 0.50, 0.75). The solid black curve shows the 
reliability when the shrinkage coefficient δ is systematically varied 
between 0 and 0.9. The maximum of this curve, ρ2

max, is indicated 
by the dashed horizontal black line, and the value of δ for which 
ρ2

max was achieved, which is δopt, is shown by the vertical red line, 

surrounded by a shaded region where the reliability is not <99.5 % 
of the ρ2

max. The boxplots shows the mean and the 0.90, 0.65, 0.35, 
and 0.10 quantiles for the different methods, centered at the aver-
age shrinkage coefficient of the respective method. The boxplots for 
Methods EJ and RM are drawn without a scale on the x-axis in a sep-
arate section within each panel, because they cannot be compared to 
the other methods based on their shrinkage coefficient

Table 2  Linear Regression of the optimum shrinkage coefficient δopt 
on the number of markers (M), heritability (h2) and training set size 
(N) as predictors scaled by subtracting the mean and dividing by the 
standard deviation

Shown are the regression coefficient estimates, followed by the 
respective standard errors in parentheses
∗∗∗p < 0.001, ∗∗p < 0.01, ∗p < 0.05

UR BP

M −0.216 (0.025)*** −0.095 (0.017)***

h2 0.073 (0.025)** 0.006 (0.017)

N −0.051 (0.025)* −0.006 (0.017)

R2 0.633 0.394
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article, the showed that shrinkage estimation of the GRM 
using Methods EJ can improve the reliability of GEBVs in 
the TS in an “unstructured” population of 274 maize inbred 
lines genotyped for 384 markers, where by “unstructured” 
they implied that the first principal component explained 
only 5 % of the total variation.

In the PS, regardless of the combination of the param-
eters M, h2 and N, shrinkage did not lead to any gain in 
reliability, i.e, the maximum achievable gain in reliability 
was essentially zero (Online Resource 1, Table S3). This 
result corroborates the findings of Endelman and Jannink 
(2012) that shrinkage did not improve the GEBV reliabil-
ity for unphenotyped individuals, even for a low number of 
markers.

Comparison between methods

In our simulation study, the optimum shrinkage coefficient 
δopt could be identified because the true genetic values and 
the QTL were known. For real applications, however, the 
shrinkage coefficient must be estimated from the data. The 
regression methods RG would lead to a shrinkage coef-
ficient δ

QTL
RG  that closely matches δopt if the QTL were 

known, which demonstrates that Method RG is in principal 
the right approach. However, neither QTL nor their number 
is known in practice, which is the reason why markers have 
to be employed as a proxy for QTL. This poses the problem 
to decide on the proportion of the sets into which the mark-
ers are partitioned, which should best reflect the unknown 
true proportion between QTL and markers. Our strategy of 
assuming the number of QTL ranging from a minimum of 
5 up to half the number of markers ensured that values δRG 
close to δQTL

RG  were achieved for a high number of mark-
ers, but it causes δRG to have a pronounced downward bias 
relative to δQTL

RG  when <200 markers were used (Table 3), 

which equals the number of QTL we used throughout our 
simulations. Consequently, Methods RG featured shrinkage 
coefficients close to δopt for M ≥ 200 and thus was one of 
the best performing methods for both population types. The 
Methods effLD had a shrinkage coefficient in good agree-
ment with δopt for M ≤ 500, where it showed reliabilities 
close to ρ2

max. However, for more than 500 markers, δeffLD 
was considerably higher than δopt, which led to shrinkage 
that was too strong and consequently reliabilities were 
even lower than those obtained for Method VR1. The same 
trend was observed for Method LDadj with shrinkage coef-
ficients δadjLD that were even more exaggerated for a large 
number of markers. Method EJ is also based on a shrinkage 
approach, but towards a slightly different target matrix than 
methods RG, effLD and adjLD, which is the reason why 
it cannot be compared to the other methods based on its 
shrinkage coefficient. The method showed superior perfor-
mance in the UR population, especially for a low number of 
markers, but revealed deficiencies in the BP population for 
low to medium number of markers, where it can underper-
form Method VR1. The method RM is not based on shrink-
age, but on a selection index approach (Riedelsheimer and 
Melchinger 2013). Although critical assumptions of the 
method are not fulfilled, it shows reasonable performance 
in both population types for M ≤ 500, but is hardly bet-
ter than Method VR1 for M = 50, particularly in the UR 
population.

In conclusion, our results demonstrate that shrinkage 
estimation of the GRM can substantially improve the reli-
ability of GEBVs of TS individuals, in particular when the 
number of markers is low and the heritability is at interme-
diate values. Of the shrinkage methods evaluated, Method 
RG was the most promising with superior performance and 
reliabilities always as high as or higher than those obtained 
from VR1.

Table 3  Shrinkage coefficients 
for different numbers of markers 
(M = 50, 100, 200, 500, 1, 000,

2, 500), averaged across 
heritability and training set size

Md marker density (number 
of markers per Morgan), 
δadjLD, δeffLD, δRG shrinkage 
coefficients for Methods adjLD, 
effLD, and RG, δQTL

RG  shrinkage 
coefficient for Method RG 
using QTL, δopt numerically 
determined optimum shrinkage 
coefficient

M Md δadjLD δeffLD δRG δ
QTL
RG

δopt

UR

 50 2.8 0.87 0.75 0.48 0.78 0.81

 100 5.6 0.78 0.58 0.44 0.63 0.64

 200 11.1 0.67 0.39 0.37 0.46 0.46

 500 27.8 0.51 0.30 0.25 0.25 0.25

 1000 55.7 0.42 0.29 0.16 0.14 0.14

 2500 139.2 0.37 0.29 0.08 0.06 0.05

BP

 50 2.8 0.58 0.32 0.16 0.44 0.39

 100 5.6 0.42 0.14 0.15 0.29 0.22

 200 11.1 0.26 0.10 0.12 0.17 0.11

 500 27.8 0.13 0.11 0.07 0.07 0.05

 1000 55.7 0.07 0.12 0.04 0.04 0.02

 2500 139.2 0.03 0.16 0.02 0.02 0.01
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Appendix

In this appendix, we describe Methods effLD and RM in 
detail.

Method effLD

In order to account for the genetic variance explained by 
markers beyond the ones immediately adjacent to QTL, we 
devised a measure for effective LD (LDeff). Because QTL 
genotypes are generally unobservable, we use marker loci 
as a proxy.

Suppose that M biallelic markers are located on a chro-
mosomal segment where pi is the estimated allele fre-
quency (of the major allele) at the ith marker. The LD 
between marker i and j can be computed according to Hill 
and Robertson (1968) as

where pij is the joint probability of the major allele occur-
ring at both marker loci i and j. LDeff is then calculated as 
follows. For each chromosome,

1. compute pij for all marker pairs as 

pij = rij

√
pipj(1 − pi)

(
1 − pj

)
+ pipj

2. compute the covariance matrix � =
{
�ij

}
 by solving 

the equations �
(
z(pi), z(pj); �ij

)
= pij for �ij for all 

marker pairs, where � is the cumulative distribution 
function of the standard bivariate normal distribution 
with mean zero and covariance �ij and z(pi) refers to 
the pith quantile of the univariate standard normal dis-
tribution (Montana 2005).

(7)r2
ij =

(
pij − pipj

)2

pipj(1 − pi)
(
1 − pj

) ,

3. compute the conditional variance for each locus i, 
given all others, as σi = �i,i − �i,−i�

−1
−i,−i�−i,i. Here, 

the subscript i denotes the ith row or column, whereas 
−i denotes all but the ith row or column. Considering 
now the ith locus as a QTL, we imagine a hypothetical 
marker locus h in the proximity that would effectively 
lead to the same conditional variance at the ith locus.

4. compute p∗
ih = �

(
z(pi), 0;

√
1 − σi

)

5. compute the effective LD for each locus i of all loci (L) as 

6. take the average across all loci on the same chromo-
some

Finally, take the average across all chromosomes. Intui-
tively, LDeff would be the average coefficient of LD that 
would be observed between a QTL and a hypothetical 
marker with 0.5 allele frequency that would reduce the var-
iance of the QTL genotype from �i,i to σi.

Method RM

We use the model and notation of Dekkers (2007)

where the phenotypic value Yi of the ith individual is 
decomposed into its genetic value Gi and an environmen-
tal deviate Ei. The genetic value is further partitioned into 
QTL effect Qi that is associated with marker through LD 
and effects Ri that is independent of markers. The effects Qi 
can be further subdivided into a prediction Q̂i and a predic-
tion error ei, both being uncorrelated with one another.

A selection index combining phenotypic data and 
GEBVs can be constructed as b = P−1G, e.g., Lande and 
Thompson (1990), where

Without loss of generality, we assume σ 2
G = var(Gi) = 1 

and σ 2
P = var(Pi) = 1

h2. Also, let q2 = var(Qi) be the pro-
portion of variance contributed by QTL that are in LD with 
markers. Then

where the last equality follows from the uncorrelatedness of 

the predictor Q̂i with the model residual ei. Thus, r
Q̂i

=
σ 2

Q̂i

σ 2
Qi

 

(8)LDeff =
L∑

i=1

(
p∗

ih − 0.5pi

)2

0.5pi(1 − pi)(1 − 0.5)

(9)Yi = Gi + Ei = Q̂i + ei + Ri + Ei,

(10)

G =

(
cov( ˆQi, Gi)

cov(Yi, Gi)

)
and P =

(
var( ˆQi); cov( ˆQi, Yi)

cov(Yi, ˆQi); var(Yi)

)
.

(11)r
(

Q̂i, Qi

)
= r

Q̂i
= cov(Q̂i, Qi)

σ
Q̂i

σQi

=
σ

Q̂i

σQi

,



702 Theor Appl Genet (2015) 128:693–703

1 3

is the proportion of genetic variance contributed by Qi that 
is explained by the GEBV Q̂i. Assuming r

(
Q̂i, Ri

)
= 0, we 

obtain

With this, we obtain cov(Q̂i, Gi) = q2r2

Q̂i
. Since 

cov(Yi, Gi) = 1 , we have

Further, we have var(Q̂i) = q2r2

Q̂i
, var(Pi) = 1

h2. Assuming 

that Q̂i and Ei are uncorrelated, i.e., r
(

Q̂i, Ei

)
= 0, we have 

cov(Q̂i, Pi) = cov(Q̂i, Gi) = q2r2

Q̂i
. Hence,

By multiplying P−1 and G, we obtain

In particular, we have

This is equivalent to Eq. 3 in Lande and Thompson (1990). 
The quantity q2r2

Q̂i
 is equal to r2

MG in Dekkers (2007), which 
is the proportion of genetic variance that is explained by 
the GEBV. In practice, this parameter can be estimated 
using cross-validation as the squared predictive ability. In 
particular, we used fivefold cross-validation with five repli-
cations to estimate r2

MG from the training set. The assump-

tions r
(

Q̂i, Ri

)
= 0 and r

(
Q̂i, Ei

)
= 0 are obviously not 

fulfilled with finite population sizes, as was validated by 
means of simulation.

References

Astle W, Balding DJ (2009) Population structure and cryptic relat-
edness in genetic association studies. Stat Sci 24(4):451–471. 
doi:10.1214/09-STS307. http://projecteuclid.org/euclid.
ss/1271770342,arXiv:1010.4681v1

Bernardo R, Yu J (2007) Prospects for genomewide selection for 
quantitative traits in Maize. Crop Sci 47(3):1082. doi:10.2135/

(12)r
(

Q̂i, Gi

)
= cov(Q̂i, Gi)

σ
Q̂i

σGi

= σQi
cov(Q̂i, Gi)

σ
Q̂i

σQi
σGi

= qr
Q̂i

.

(13)G =
(

cov(Q̂i, Gi)

cov(Yi, Gi)

)
=

(
q2r2

Q̂i

1

)

(14)

P =
(

var(Q̂i); cov(Q̂i, Yi)

cov(Yi, Q̂i); var(Yi)

)
=

(
q2r2

Q̂i
; q2r2

Q̂i

q2r2

Q̂i
; 1

h2

)

(15)b1 = 1 − h2

1 − h2q2r2

Q̂i

and b2 =
h2 − h2q2r2

Q̂i

1 − h2q2r2

Q̂i

,

(16)
b1

b2
=

1
h2 − 1

1 − q2r2

Q̂i

=
1
h2 − 1

1 − r2
MG

.

cropsci2006.11.0690. https://www.crops.org/publications/cs/
abstracts/47/3/1082

de Los Campos G, Hickey JM, Pong-Wong R, Daetwyler HD, Calus 
MPL (2013) Whole-genome regression and prediction meth-
ods applied to plant and animal breeding. Genetics 193(2), pp. 
327–45. doi:10.1534/genetics.112.143313. http://www.pubmed-
central.nih.gov/articlerender.fcgi?artid=3567727&tool=pmcentr
ez&rendertype=abstract

Dekkers JCM (2007) Prediction of response to marker-assisted and 
genomic selection using selection index theory. J Anim Breed 
Genet 124(6):331–41. doi:10.1111/j.1439-0388.2007.00701.x. 
http://www.ncbi.nlm.nih.gov/pubmed/18076470

Endelman JB (2011) Ridge regression and other kernels for genomic 
selection with R Package rrBLUP. Plant Genome J 4(3):250. 
doi:10.3835/plantgenome2011.08.0024. https://www.crops.org/
publications/tpg/abstracts/4/3/250

Endelman JB, Jannink JL (2012) Shrinkage estimation of the real-
ized relationship matrix. G3 2(11):1405–13. doi:10.1534/
g3.112.004259. http://www.pubmedcentral.nih.gov/articlerender.
fcgi?artid=3484671&tool=pmcentrez&rendertype=abstract

Frisch M, Melchinger AE (2007) Variance of the parental genome 
contribution to inbred lines derived from biparental crosses. 
Genetics 176(1):477–88, doi:10.1534/genetics.106.065433. 
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=1893
034&tool=pmcentrez&rendertype=abstract

Goddard ME, Wray NR, Verbyla K, Visscher PM (2009) Estimating 
effects and making predictions from genome-wide marker data. 
Stat Sci 24(4):517–529. doi:10.1214/09-STS306. http://project-
euclid.org/euclid.ss/1271770346,arXiv:1010.4710v1

Goddard ME, Hayes BJ, Meuwissen THE (2011) Using the 
genomic relationship matrix to predict the accuracy of genomic 
selection. J Anim Breed Genet 128(6):409–21, doi:10.1111/
j.1439-0388.2011.00964.x. http://www.ncbi.nlm.nih.gov/
pubmed/22059574

Habier D, Fernando RL, Dekkers JCM (2007) The impact of genetic 
relationship information on genome-assisted breeding values. 
Genetics 177(4):2389–97. doi:10.1534/genetics.107.081190. 
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=2219
482&tool=pmcentrez&rendertype=abstract

Habier D, Fernando RL, Garrick DJ (2013) Genomic BLUP decoded: 
a look into the black box of genomic prediction. Genetics 
194(3):597–607. doi:10.1534/genetics.113.152207. http://www.
ncbi.nlm.nih.gov/pubmed/23640517

Hayes B, Goddard M (2010) Genome-wide association and genomic 
selection in animal breeding. Genome 53(11): 876–83. doi:10.1139/
G10-076. http://www.ncbi.nlm.nih.gov/pubmed/21076503

Hayes BJ, Bowman PJ, Chamberlaina J, Goddard ME (2009) Invited 
review: genomic selection in dairy cattle: progress and chal-
lenges. J Dairy Sci 92(2):433–43. doi:10.3168/jds.2008-1646. 
http://www.ncbi.nlm.nih.gov/pubmed/19164653

Henderson CR (1973) Sire evaluation and genetic trends. J Anim Sci, 
pp 10–41

Hill W, Robertson A (1968) Linkage disequilibrium in finite popula-
tions. Theor Appl Genet 38(6):226–231. http://link.springer.com/
article/10.1007/BF01245622

Hill WG (2010) Understanding and using quantitative genetic varia-
tion. Philos Trans R Soc Lond Ser B Biol Sci 365(1537);73–85. 
doi:10.1098/rstb.2009.0203. http://www.pubmedcentral.nih.gov/
articlerender.fcgi?artid=2842708&tool=pmcentrez&rendertype
=abstract

Hill WG, Weir BS (2011) Variation in actual relationship as a conse-
quence of Mendelian sampling and linkage. Genet Res 93(1):47–
64. doi:10.1017/S0016672310000480. http://www.pubmedcen-
tral.nih.gov/articlerender.fcgi?artid=3070763&tool=pmcentrez
&rendertype=abstract

http://dx.doi.org/10.1214/09-STS307
http://projecteuclid.org/euclid.ss/1271770342,
http://projecteuclid.org/euclid.ss/1271770342,
http://arxiv.org/abs/1010.4681v1
http://dx.doi.org/10.2135/cropsci2006.11.0690
http://dx.doi.org/10.2135/cropsci2006.11.0690
https://www.crops.org/publications/cs/abstracts/47/3/1082
https://www.crops.org/publications/cs/abstracts/47/3/1082
http://dx.doi.org/10.1534/genetics.112.143313
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3567727&tool=pmcentrez&rendertype=abstract
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3567727&tool=pmcentrez&rendertype=abstract
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3567727&tool=pmcentrez&rendertype=abstract
http://dx.doi.org/10.1111/j.1439-0388.2007.00701.x
http://www.ncbi.nlm.nih.gov/pubmed/18076470
http://dx.doi.org/10.3835/plantgenome2011.08.0024
https://www.crops.org/publications/tpg/abstracts/4/3/250
https://www.crops.org/publications/tpg/abstracts/4/3/250
http://dx.doi.org/10.1534/g3.112.004259
http://dx.doi.org/10.1534/g3.112.004259
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3484671&tool=pmcentrez&rendertype=abstract
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3484671&tool=pmcentrez&rendertype=abstract
http://dx.doi.org/10.1534/genetics.106.065433
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=1893034&tool=pmcentrez&rendertype=abstract
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=1893034&tool=pmcentrez&rendertype=abstract
http://dx.doi.org/10.1214/09-STS306
http://projecteuclid.org/euclid.ss/1271770346,
http://projecteuclid.org/euclid.ss/1271770346,
http://arxiv.org/abs/1010.4710v1
http://dx.doi.org/10.1111/j.1439-0388.2011.00964.x
http://dx.doi.org/10.1111/j.1439-0388.2011.00964.x
http://www.ncbi.nlm.nih.gov/pubmed/22059574
http://www.ncbi.nlm.nih.gov/pubmed/22059574
http://dx.doi.org/10.1534/genetics.107.081190
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=2219482&tool=pmcentrez&rendertype=abstract
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=2219482&tool=pmcentrez&rendertype=abstract
http://dx.doi.org/10.1534/genetics.113.152207
http://www.ncbi.nlm.nih.gov/pubmed/23640517
http://www.ncbi.nlm.nih.gov/pubmed/23640517
http://dx.doi.org/10.1139/G10-076
http://dx.doi.org/10.1139/G10-076
http://www.ncbi.nlm.nih.gov/pubmed/21076503
http://dx.doi.org/10.3168/jds.2008-1646
http://www.ncbi.nlm.nih.gov/pubmed/19164653
http://link.springer.com/article/10.1007/BF01245622
http://link.springer.com/article/10.1007/BF01245622
http://dx.doi.org/10.1098/rstb.2009.0203
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=2842708&tool=pmcentrez&rendertype=abstract
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=2842708&tool=pmcentrez&rendertype=abstract
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=2842708&tool=pmcentrez&rendertype=abstract
http://dx.doi.org/10.1017/S0016672310000480
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3070763&tool=pmcentrez&rendertype=abstract
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3070763&tool=pmcentrez&rendertype=abstract
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3070763&tool=pmcentrez&rendertype=abstract


703Theor Appl Genet (2015) 128:693–703 

1 3

Kang HM, Zaitlen Na, Wade CM, Kirby A, Heckerman D, Daly 
MJ, Eskin E (2008) Efficient control of population structure in 
model organism association mapping. Genetics 178(3):1709–23. 
doi:10.1534/genetics.107.080101. http://www.pubmedcentral.
nih.gov/articlerender.fcgi?artid=2278096&tool=pmcentrez&ren
dertype=abstract

Lande R, Thompson R (1990) Efficiency of marker-assisted selection 
in the improvement of quantitative traits. Genetics 124(3):743–
56. http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=1
203965&tool=pmcentrez&rendertype=abstract

Lynch M, Walsh B (1998) Genetics and analysis of quantitative traits, 
1st edn. Sinauer Associates, Sunderland

Meuwissen THE, Hayes BJ, Goddard ME (2001) Prediction of total 
genetic value using genome-wide dense marker maps. Genetics 
157(4):1819–1829. http://www.genetics.org/content/157/4/1819.
abstract

Montana G (2005) HapSim: a simulation tool for generating haplotype 
data with pre-specified allele frequencies and LD coefficients. Bioin-
formatics (Oxford, England) 21(23): 4309–11, doi:10.1093/bioinfor-
matics/bti689. http://www.ncbi.nlm.nih.gov/pubmed/16188927

Powell JE, Visscher PM, Goddard ME (2010) Reconciling the anal-
ysis of IBD and IBS in complex trait studies. Nat Rev Genet 
11(11): 800–5. doi:10.1038/nrg2865. http://www.ncbi.nlm.nih.
gov/pubmed/20877324

R Core Team (2014) R: a language and environment for statistical 
computing. http://www.r-project.org/

Riedelsheimer C, Melchinger AE (2013) Optimizing the allocation 
of resources for genomic selection in one breeding cycle. TAG 
Theoret Appl Genet 126(11):2835–48. doi:10.1007/s00122-013-
2175-9. http://www.ncbi.nlm.nih.gov/pubmed/23982591

Riedelsheimer C, Technow F, Melchinger AE (2012) Comparison 
of whole-genome prediction models for traits with contrast-
ing genetic architecture in a diversity panel of maize inbred 
lines. BMC genomics 13(1):452. doi:10.1186/1471-2164-13-
452. http://www.mendeley.com/research/comparison-of-whole-
genome-prediction-models-for-traits-with-contrasting-genetic-
architecture-in-a-d-1/

Searle SR, Casella G, McCulloch CE (1992) Variance components, 
1st edn. Wiley-Interscience, Hoboken

Smith JSC, Hussain T, Jones ES, Graham G, Podlich D, Wall S, 
Williams M (2008) Use of doubled haploids in maize breed-
ing: implications for intellectual property protection and genetic 
diversity in hybrid crops. Mol Breed 22(1):51–59. doi:10.1007/
s11032-007-9155-1. http://link.springer.com/10.1007/
s11032-007-9155-1

Technow F (2013) hypred: simulation of genomic data in applied 
genetics. http://cran.r-project.org/web/packages/hypred/

VanRaden PM (2008) Efficient methods to compute genomic predic-
tions. J Dairy Sci 91(11):4414–23. doi:10.3168/jds.2007-0980. 
http://www.ncbi.nlm.nih.gov/pubmed/18946147

Yang J, Benyamin B, McEvoy BP, Gordon S, Henders AK, Nyholt 
DR, Madden Pa, Heath AC, Martin NG, Montgomery GW, 
Goddard ME, Visscher PM (2010) Common SNPs explain a 
large proportion of the heritability for human height. Nat Genet 
42(7):565–9. doi:10.1038/ng.608. http://www.pubmedcentral.nih.
gov/articlerender.fcgi?artid=3232052&tool=pmcentrez&rendert
ype=abstract

http://dx.doi.org/10.1534/genetics.107.080101
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=2278096&tool=pmcentrez&rendertype=abstract
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=2278096&tool=pmcentrez&rendertype=abstract
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=2278096&tool=pmcentrez&rendertype=abstract
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=1203965&tool=pmcentrez&rendertype=abstract
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=1203965&tool=pmcentrez&rendertype=abstract
http://www.genetics.org/content/157/4/1819.abstract
http://www.genetics.org/content/157/4/1819.abstract
http://dx.doi.org/10.1093/bioinformatics/bti689
http://dx.doi.org/10.1093/bioinformatics/bti689
http://www.ncbi.nlm.nih.gov/pubmed/16188927
http://dx.doi.org/10.1038/nrg2865
http://www.ncbi.nlm.nih.gov/pubmed/20877324
http://www.ncbi.nlm.nih.gov/pubmed/20877324
http://www.r-project.org/
http://dx.doi.org/10.1007/s00122-013-2175-9
http://dx.doi.org/10.1007/s00122-013-2175-9
http://www.ncbi.nlm.nih.gov/pubmed/23982591
http://dx.doi.org/10.1186/1471-2164-13-452
http://dx.doi.org/10.1186/1471-2164-13-452
http://www.mendeley.com/research/comparison-of-whole-genome-prediction-models-for-traits-with-contrasting-genetic-architecture-in-a-d-1/
http://www.mendeley.com/research/comparison-of-whole-genome-prediction-models-for-traits-with-contrasting-genetic-architecture-in-a-d-1/
http://www.mendeley.com/research/comparison-of-whole-genome-prediction-models-for-traits-with-contrasting-genetic-architecture-in-a-d-1/
http://dx.doi.org/10.1007/s11032-007-9155-1
http://dx.doi.org/10.1007/s11032-007-9155-1
http://link.springer.com/10.1007/s11032-007-9155-1
http://link.springer.com/10.1007/s11032-007-9155-1
http://cran.r-project.org/web/packages/hypred/
http://dx.doi.org/10.3168/jds.2007-0980
http://www.ncbi.nlm.nih.gov/pubmed/18946147
http://dx.doi.org/10.1038/ng.608
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3232052&tool=pmcentrez&rendertype=abstract
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3232052&tool=pmcentrez&rendertype=abstract
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3232052&tool=pmcentrez&rendertype=abstract

	Shrinkage estimation of the genomic relationship matrix can improve genomic estimated breeding values in the training set
	Abstract 
	Key message 
	Abstract 

	Introduction
	Material and methods
	Statistical model
	Simulation
	Shrinkage methods
	Method 1: adjLD
	 Method 2: effLD
	Method 3: RG
	Method 4: EJ
	Method 5: RM

	Results
	Reliability of method VR1 in the TS and PS
	Reliabilities in the BP and UR population
	Shrinkage coefficients

	Discussion
	Shrinkage estimation of the GRM
	Optimum shrinkage coefficient
	Comparison between methods

	Conflict of interest 
	References


